Patricia Keely
Position title: Chair Jan and Kathryn Ver Hagen Professor of Translational Research
Email: pjkeely@wisc.edu
Phone: Phone: (608) 265-2398
Address:
RESEARCH INTERESTS - Integrin and small GTPase signaling events in differentiation and transformation

Address: 4533 WIMR II – 1111 Highland Ave Madison, WI 53705
B.S., University of Minnesota, St. Paul
Ph.D., University of Minnesota, Minneapolis
Postdoctoral Research, Washington University, St. Louis
Postdoctoral Research, Univ. of North Carolina, Chapel Hill
Affiliations
Laboratory for Cell and Molecular Biology
Co-PI, Laboratory for Optical and Computational Instrumentation
Affiliate Department of Biomedical Engineering
Co-Leader, Tumor Microenvironment Group, UW Carbone Cancer Center
Appropriate cellular interactions with the extracellular matrix (ECM) help to establish normal cellular architecture and differentiation. During oncogenic transformation, these normal interactions with the ECM are profoundly altered, resulting in cells that lose their polarization and differentiation, lose anchorage dependent growth control, and acquire a migratory, invasive phenotype. Our lab is interested in understanding, at a molecular level, how cellular interactions with the ECM determine differentiation and epithelial polarization, and how these interactions are altered during carcinogenesis to result in invasive, metastatic carcinoma.
Understanding molecular mechanisms underlying breast cancer risk due to breast density
Patients with “dense” breast tissue have a four to six-fold increased risk of developing breast carcinomas. In fact, 1/3 of all breast cancer cases are attributed to breast density, making it one of the greatest risk factorsfor carcinoma. Increased breast density is associated with a significant increase in the deposition of connective tissue, or extracellular matrix (ECM) components, most notably the protein, collagen. We have been developing model systems to understand why increased breast density results in an increased risk for developing breast carcinoma. We find in a simple in vitro model that increasing the density of collagen in the matrix is sufficient to disrupt breast epithelial differentiation, suggesting that matrix density is itself an important regulator of cellular behavior. Additionally, we are employing a mouse strain engineered to have more collagen in its connective tissue. Mouse tumor studies are underway to directly test whether increased collagen density will enhance tumor formation or tumor metastasis.
State of the art imaging approaches are being used to characterize the collagen structure in normal glands and around tumors so that we can better understand the physical relationship between cells and the collagen fibers found in breast tissue. We find evidence for a collagen “signature” that is present in even before a tumor is palpable, predicting where a tumor will soon arise. We are investigating whether this signature can be developed as a tool to aid in diagnosing human breast carcinoma at an earlier stage.
Using biochemical and DNA microarray approaches, we are characterizing several biochemical and genetic changes that occur in cells that encounter dense matrices. Dense collagen environments activate signal pathways within cells that result in a more tumor-like behavior: increased cell proliferation or growth, decreased cell death, and increased ability to invade into nearby tissues. We expect that our studies to characterize the molecular response of cells to dense collagen matrices will allow us to better understand tumor progression.
Molecular signaling events related to cell interactions with the ECM
Cells interact with the ECM through a variety of cell surface receptors, the best understood of which are members of the integrin family. Much remains to be determined regarding the specific molecular players and signaling pathways downstream of integrins, and how these pathways are involved in the progression of various diseases. Therefore, part of the focus of the lab is to investigate signaling events through the integrin family of receptors. A second aspect of this work is to investigate how small GTPases of the Ras superfamily, some of which are known or suspected oncogenes, affect the response of cells to the ECM. Specifically, we have focused on R-Ras and Rho, which we find alter the way breast epithelial cells respond to the ECM, promoting cellular migration and invasion. We are particularly interested in studying signaling events using state of the art imaging approaches to understand how small GTPases function in a spatial and temporal manner during cell migration.
Representative Publications: Visit the Keely Lab Page