Ahmed Mahmoud

Position title: Assistant Professor

Email: aimahmoud@wisc.edu

Phone: Phone: (608) 262-8682

RESEARCH INTERESTS - Cellular and Molecular Regulation of Mammalian Heart Regeneration

Headshot of Ahmed Mahmoud
Address: 4557 WIMR II – 1111 Highland Ave Madison, WI 53705
Visit the Mahmoud Lab Website

Position Open for Postdoctoral Researcher



Ph.D., Univ. of Texas Southwestern Medical Center at Dallas
Postdoctoral Research: Stem Cell and Regenerative Biology, Harvard University


Heart failure is the leading cause of death in the world due to the inability of the adult mammalian heart to regenerate following injury. Lower vertebrates, such as zebrafish are capable of complete and efficient regeneration of the myocardium following injury. Similarly, we demonstrated that neonatal mice are capable of regenerating their hearts within a short period after birth but lose this potential in the first week of life. Adult mammals lack this cardiac regeneration potential, thus our overarching goal in the laboratory is to dissect the molecular underpinnings of regeneration in the neonatal heart so that we can explore potential avenues to activate this process in adult humans.

Our goals are to identify the transcriptional and epigenetic networks that govern cardiomyocyte dedifferentiation and proliferation during regeneration. These studies could aid in converting adult cardiomyocytes to a more proliferative and regenerative state. In addition, we aim to identify the microenvironment signals that regulate mammalian heart regeneration by studying the interplay of nerves as well as extracellular factors during mammalian heart regeneration. We use multidisciplinary approaches including genomics, proteomics, and mouse genetics in addition to molecular and cellular technologies to address these questions.

Representative Publications

  • Salamon, R.J., Zhang, Z., Mahmoud, A.I.*. Capturing the Cardiac Injury Response of Targeted Cell Populations via Cleared Heart Three-Dimensional Imaging. Journal of Visualized Experiments, 2020 Mar 17; (157). (*corresponding author).
  • Brandt, E.B., Bashar, S.J., Mahmoud, A.I.*. Stimulating ideas for heart regeneration: the future of nerve-directed heart therapy. Bioelectronic Medicine, 2019 Jun 26; 5:8. (*corresponding author).
  • Mahmoud, A.I.* and Porrello, E.R*. Upsizing Neonatal Heart Regeneration. Circulation, 2018 Dec 11;138(24):2817-2819. (*co-corresponding authors).
  • Mahmoud, A.I., O’Meara, C.C., Gemberling, M., Zhao, L., Bryant, D.M., Zheng, R., Gannon, J.B., Cai, L., Choi, W., Egnaczyk, G.F., Burns, C.E., Burns, C.G., MacRae, C.A., Poss, K.D., Lee, R.T. Nerves regulate cardiomyocyte proliferation and heart regeneration. Developmental Cell, 2015 Aug 24;34(1):1-13.
  • Mahmoud, A.I., Porrello, E.R., Kimura, W., Olson. E.N., Sadek, H.A. Surgical models for cardiac regeneration in neonatal mice. Nature Protocols, 2014 Feb;9(2):305-11.
  • Mahmoud, A.I., Kocabas, F., Muralidhar, S.A., Kimura, W., Koura, A.S., Thet, S., Porrello, E.R., Sadek, H.A. Meis1 regulates postnatal cardiomyocyte cell cycle arrest. Nature, 2013 May 9;497(7448):249-53.
  • Porrello, E.R., Mahmoud, A.I., Simpson, E., Johnson, B.A., Grinsfelder, D., Canseco, D., Mammen, P.P, Rothermel, B.A., Olson, E.N., Sadek, H.A. Regulation of neonatal and adult mammalian heart regeneration by the miR-15 family. Proc. Natl. Acad. Sci., U.S.A, 2013 Jan 2;110(1):187-92.
  • Porrello, E.R.,Mahmoud, A.I., Simpson, E., Hill, J.A., Richardson, J.A., Olson, E.N., Sadek, H.A. Transient regenerative potential of the neonatal mouse heart. Science, 2011 Feb 25;331(6020):1078-80.