Deneen Wellik

Professor and Chair

wellik@wisc.edu

Phone: (608) 262-5491

RESEARCH INTERESTS - Hox genes in mesenchymal stromal cells (MSCs) and their role in development, repair and regeneration

Address: 4533 WIMR II – 1111 Highland Ave. – Madison, WI 53705
Visit the Wellik Lab Website

Pubmed

Education

Washington University in St. Louis; AB, Biology

University of Wisconsin-Madison, PhD, Biochemistry
(Mentor: Dr. Hector F. DeLuca, PhD)

University of Utah, Department of Human Genetics, Postdoctoral
Fellowship, Salt Lake City, Utah
(Mentor: Dr. Mario R. Capecchi, PhD)

Research

My laboratory use mouse genetics to understand the function of Hox genes during mammalian organogenesis.  Hox genes are a highly conserved group of transcriptional regulators that are critical for directing numerous patterning processes during development and that direct repair and regeneration throughout life.  The laboratory has investigated many organ systems and current projects focus on the musculoskeletal system and lung. Using primarily advanced mouse genetics, we are dissecting Hox gene function in both development and response to injury and disease.  Developmentally, Hox genes are critical for the proper differentiation and integration of cell and tissue types and play key roles in the formation of a functional organ.  In response to injury and disease, Hox genes are up-regulated in the same regionally-restricted manner they are employed developmentally, and these genes play important roles in repair and regeneration after tissue damage.  Our long-term goal is centered on understanding the downstream mechanisms controlled by Hox genes to direct these developmental and repair processes in mammals and to elucidate how this information can be used to improve potential regenerative therapies in response to injury and disease.

Representative Publications

  • Hrycaj, S.M., Marty-Santos, L., Cebrian, C., Rasky, A., Ptaschinski, C., Lukacs, N.W., Wellik, D.M., “Hox5 Genes Direct Elastin Network Formation During Alveologenesis By Regulating Myofibroblast Adhesion”, PNAS 115(45): E10605-E10614 (2018).
  • Rux, D.R., Song, J.Y., Swinehart, I.T., Pineault, K.M., Schlientz, A.J., Trulik, K.G., Goldstein, S.A., Kozloff, K.M., Lucas, D., Wellik, D.M., “Regionally Restricted Hox Function in Adult Bone Marrow Multipotent Mesenchymal Stem/Stromal Cells,” Developmental Cell 39(6): 653-666 (2016).
  • Larsen, B.M., Hrycaj, S.M., Newman, M., Li, Y., Wellik, D.M., “Mesenchymal Hox6 function is required for pancreatic endocrine cell differentiation”, Development 142: 3859-3868 (2015).
  • Xu, B., Hyrcaj, S.M., McIntyre, D.M., Takeuchi, J.K., Jeannotte, L., Gaber, Z.B., Novitch, B.G., Wellik, D.M., “Hox5 interacts with Plzf to restrict Shh expression in the developing forelimb”, PNAS 110: 19438-43 (2013).
  • Swinehart, I.T., Schlientz, A.J., Quintanilla, C.A., Mortlock, D.P., Wellik, D.M.,    “Hox11 function is required for regional patterning and integration of muscle, tendon and bone”, Development 140: 4574-82 (2013).
  • Xu, B., Wellik, D.M.,Axial Hox9 Activity Establishes the Posterior Compartment in the Developing Forelimb”, PNAS 108: 4888-91 (2011).
  • McIntyre, D.C., Rakshit, S, Yallowitz, A. R. Loken. L., Jeannotte, L, Capecchi, M.R., and Wellik, D.M. Hox Patterning of the Vertebrate Rib Cage”, Development 134: 2981-2989 (2007).
  • Wellik, D.M., and Capecchi, M.R.  Hox10 and Hox11 genes are required to globally pattern the mammalian skeleton. Science 301:363-367 (2003).
  • Wellik, D.M., Hawkes, P.J. and Capecchi, M.R. Hox11 paralogous genes are essential for AR0metanephric kidney induction.  Genes & Development 16: 1423-1432 (2002).